
AD-A253 416

OFFICE OF NAVAL RESEARCH

Grant N00014-90-J-1 193

TECHNICAL REPORT No. 88

Temperature Variation of the Elementary Excitation Spectrum of Thin Liquid 4He

Films

by

Chung-In Urm, Sang-Tahk Nam, Soo-Young Lee and Thomas F. George

Prepared for publication

in

Physical Review B _ -

JUL 16 1992

Departments of Chemistry and Physics
Washington State University
Pullman, WA 99164-1046

July 1992

Reproduction in whole or in part is permitted for any purpose of the United States
Government.

This document has been approved for public release and sale; its distribution is
unlimited.

92-18849

9 2,



REPORT DOCUMENTATION PAGE owN.00-1
Itimc e o ulC rdeln for I,~nes gofi of inionmatiof is c"tomatt toa .,.qoie , hour owt rueam.. auecatmnq UI1w t t lhwrswumq unuaa,. Iat w esetauis ates ~Cin.

gathilqma al elee 060t1019l thle GMt wea. alto cornoaieuq &no v.iewino thle c041ep(Uof at tritonngtian. SefO COlNfleft fog@-U W~ 111lS ON Raml Wo emmat a t hr ~"~ Of11 ee this,OiIton 0v ifIV~fattoen. mfciiig s jgtiofli for reCUC14tskifo lilt OU W o * j qOe iwosokttterSefteelee. OftgCtWIIW tl t tor l t lOf10i 00.taOUM eOW 014flos. 1I leerilon
04ena r 16l.4i. li.te 1,104 Atimqton. v&. 222024302. &r4 to %" ice) t ee ageppwis a"d 6~qe. Pbgseworit itiouction 0 OW c40104-411). Waawbam DC 20S1.

1. AGENCY USE ONLY (Leav'e eilanor) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1992 IInterim
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Temperature Variation of 4the Elementary Excitation Grant
Spectrum of Thin Liquid He Films N01-0J19

6. AUTHOR(S)

Chung-In Umn, Sang-Tahk Nam, Soo-Young Lee and
Thomas F. George

7. PERFORMI1NG ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Departments of Chemistry and Physics
Washington State University WSU/92/88

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

Prepared for publication in Physical Review B

12a. DISTRIBUTION / AVAILA8ILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The temperature variation of the elementary excitation spectrum of thin liquid
4 He films is derived within the ring diagram approximation. This theory is

microscopic only in the long wavelength limit. Using this anomalous spectrum,

the specific heat data adsorbed on Grafoil graphite and the first, second and

third sounds are analyzed. The temperature variation of the phonon spectrum

is very negligible for low temperatures. However, with increasing temperature

from 0.6 ~ 0.7 K to near the vicinity of the two-dimensional transition

temperature of 1.21 K, the temperature effect is significant regarding the

physical properties of thin liquid 4He films.

1.SBETTRS4 15. NUMBER OF PAGES
THIN LIQUID He FILMS SPECIFIC HEAT DATA 55
ELEMENTARY EXCITATION SPECTRUM SECOND AND THIRD SOUNDS 16. PRICE CODE

TEMPERATURE VARIATION LONG WAVELENGTH LIMIT NTIS
17. SECURITY CLASSIFICATION4 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

%5SN 7540-01-280-5500 Standaro Form 298 (Rev 2-89)
P~~jcTibee be ANSI ',to 139-15
298-102



* Physical Review B, in press

Temperature variation of the elementary excitation spectrum of

thin liquid 4He films

Chung-In Um, Sang-Tahk Nam and Soo-Young Lee
Department of Physics

College of Science
Korea University, Seoul 136-701, Korea

and

Thomas F. George
Departments of Chemistry and Physics

Washington State University
Pullman, Washington 99164-1046

The temperature variation of the elementary excitation spectrum of thin

liquid 4He films is derived within the ring diagram approximation. This

theory is microscopic only in the long wavelength limit. Using this anomalous

spectrum, the specific heat data adsorbed on Grafoil graphite and the first,

second and third sounds are analyzed. The temperature variation of the phonon

spectrum is very negligible for low temperatures. However, with increasing

temperature from 0.6 - 0.7 K to near the vicinity of the two-dimensional

transition temperature of 1.21 K, the temperature effect is significant

regarding the physical properties of thin liquid 4He films.

PACS No. 67.40Db, 67.40 Kh, 67.40 Mj, 67.4OPm.

A*oession For

To whom correspondence should be addressed NTIS OOI
DT: L,

- J ' '  - .~ . .. . -

J ..

Dist p cU..



2

I. Introduction

The understanding of elementary excitation spectrums of two- and three-

dimensional liquid 4He has been one of the important problems in low-

temperature condensed matter physics. After Landau's well-known

phenomenological theoryI for liquid 4He, many microscopic theories have been

developed by Bogoliubov, 2 Feynman and Cohen,3 Lee and Yang4 and others. 5 By

considering of interactions between quasiparticles, Kebukawa et al and
6

Iwamoto have tried to explain the multi-excitation spectrum in bulk liquid
4He. However, most theories have been primarily developed for absolute zero

temperature and have yielded the normal dispersion (convex down) relation,

which yields the wrong spectrum, whereas the anomalous dispersion (concave up)

relation is correct. In the former case, four-phonon processes turn out to be

the lowest order, while in the latter case three-phonon processes are the
7

lowest.

Recently Chin and Krotscheck 8computed the ground-state structure and

collective excitation energies of 4He droplets at zero temperature, which are

described by a generalized Feynman theory, while Krishna and Whaley
9

calculated the excitation spectra of compressional modes of 4He for 20, 70 and

240 clusters at 0 K. Chakraboty et al10 derived the excitation spectrum from

the random-phase approximation with the assumption that Bogoliubov excitation

is noninteracting, and they found that the spectrum agrees only qualitatively

with the experiment. On the other hand, Reppy et a112 observed sharp cusplike

heat capacity singularities in coincidence with the superfluid transition,

which is strongly related to the excitation spectrum, and confirmed that 4He-

filled aerogels are not in the same universal class as bulk helium. Stirling

13et al performed high-precision neutron scattering measurements of the
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temperature dependence of the phonon and roton excitation in liquid 4He at

saturated vapor pressure in both the superfluid and normal-fluid phases.

For two-dimensional liquid 4He, in recent developments of experimental

techniques, the properties of 4He films have been widely investigated. Some

years ago, Isihara and UN13 derived successfully the elementary excitation

spectrums, that are microscopic only in the long wavelength limit, for two-

and three-dimensional liquid 4He in the zero temperature limit using the ring

diagram approximation, which gives anomalous phonon-like behavior at low

momenta and roton-like at high momenta. Starting with these elementary

14 15 1eod6
excitation, we have successfully explained phonon decay, first, second

17 18 19
and third sound, their sound attenuation, thermal conductivity, first

vicst 2 0  
. 21

viscosity 2and thermal diffusion.

According to the experiments performed by Wood 2 2 and others,23 it is

well known that the temperature variation of the elementary excitation is

small but becomes significant in the vicinity of the A-point. However, we

have not found any calculations of this temperature variation in two-

dimensional liquid 4He. All the more, we still do not know whether or not the

effect of the temperature variation on three-phonon processes is significant,

which is a question not addressed by Landau or Khalatnikov.

It is the purpose of this paper to evaluate the temperature variation of

the elementary excitation spectrum of two-dimensional liquid 4He on the basis

of a microscopic theory in the long wavelength limit in the ring diagram

approximation, and then to investigate the temperature effect on the structure

factor, thermodynamic functions, fluid density and various sounds of two-

dimensional liquid He. In Sec. II we shall treat the pair distribution

function using the chain diagram approximation and present some basic formulas

which will be used in the following sections. The structure factor and the
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elementary excitation spectrum will be evaluated in Secs. III and IV,

respectively. The thermodynamic functions and fluid densities will be given

in Sec. V. We shall evaluate the first, second and third sounds in Sec. VI,

and finally in Sec. VII we shall discuss our present results in comparison

with related work.

II. Chain diagram approximation

In this section we offer the formula of the pair distribution function

within the chain diagram approximation and related formulas and then derive

the excitation spectrum in the long wavelength limit at absolute zero

temperature. The chain diagram approximation is justified since in a two-

dimensional Bose system the pair distribution function depends on the modified

Bessel function of order zero, i.e., Ko(r), in contrast to an ideal gas.

Within this approximation, 24 the pair distribution function p2 (r) of a two-

dimensional Bose liquid is given as

____u(q)A 2(q)

P2 (r) - n2 + 12 (r) 2) 2 J . dq I + u(q)Aj(q) e , (2.1)

where n is the number density, f - 1/kBT, u(q) is the Fourier transform of the

interaction potential, A. is the j-th eigenvalue of the effective boson

propagator representing the unit of a chain, and 12 (r) is the ideal-gas

contribution given as

12(r) 4 f_ J dpdq f(p)f(p+q)e ip . (2.2)
(2x)
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The eigenvalues A. (q) of the effective propagator can be obtained from the

expression

(2w) da dp f(p)[l+f(p+q)jexp[a~p -(p+q) )Je (2.3)

where f(p) is the Bose-Einstein distribution function

f(p) , ze 2 (2.4)

1- ze-O

where z is the fugacity.

The integrand of Eq. (2.1) can be divided into two parts as

u 2(q) A (q)

-i~ + ;-u(q)A A(q) +1 + u(q)X (q) (2.5)

From the definition of A.(q) in Eq. (2.3), the first term on the right-handJ

side of Eq. (2.5) yields

4 2 A (q)e iq -- n6(r)- (r )  (2.6)

Hence, the pair distribution function p2 (r) becomes

)A (q) e i ' ((r) - n 2  _ n6(r) + dg.(2 ) 1+uq)j ) (2.7)

2 (2r) 21 + ~q)Ai (q
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The ideal-gas term is eliminated, and it is much easier to treat Eq. (2.7)

than Eq. (2.1) because the numerator of integrand in the latter is linear in

.(q).

In terms of the pair distribution function, the internal energy is given

by

U(T) - Ud d (r) ( [+P2(r,fl)] , (2.8)

0

where is a coupling constant, U 0(T) is the ideal-gas energy, A is the two-

dimensional volume, and O(r) is the two-body interaction potential.

Substituting Eq. (2.7) for the pair distribution function into Eq. (2.8), we

obtain the internal energy as

U(T) -U (T) +n2I f rd--L--o --- d (r) - nA u(q)
(21) 2

+ I d jf 1 u(q)A (q)
2 frd dg 1 (2.9)

( fl2f1 u(q)A (q)]J

The effective eigenvalues A.(q) evaluated to first-order from Eq. (2.3) are

given by

2

A (q) - 2 2 (2.10)
q 2+ ( )

and substitution of Eq. (2.10) into (2.9) yields the final expression for the

internal energy at absolute zero temperature as
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2 f d 2
U(T) - 2 n2A f dr 0(r) + J (21)2 [E(q) - q nu(q)]

+ A J -a - E(q)f(E) (2.11)
(2r)

2

where f(E) - i/[e)E - i] is the Bose distribution function, and

E(q) - [q4 + 2nu(q)q 2 1 (2.12)

is the excitation energy which was given originally by Bogoliubov and

Zubarev. 25

In the expression for the internal energy given by Eq. (2.11), the first

and second terms represent the ground-state energy and the quasiparticle

excitation energy, where the latter demonstrates a Landau-type excitaiton but

does not provide for the temperature variation of the elementary excitation

spectrum. For finite temperatures, the above approach is not quite correct;

the eigenvalues must have terms which are dependent on the de Broglie thermal

wavelength, and we shall discuss this problem in the following sections.

III. Structure factor

In the chain diagram approximation, the structure factor, S(q), is given

by the integrand of Eq. (2.7) as

S(q) - 2 i + u(q)Aj(q) (3.1)

Combining Eqs. (2.10) and (3.1), we obtain
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q coth(I q)[[q
2 + 2nu(q)] 

(.

S(q) - 232
[q2 + 2nu(q)]M

26

This result agrees with those obtained by others. In order to extend this

calculation to higher temeperatures, we may use

A.(q) - 0(q) + AA (q) (3.3)

where

0 2n. 12ni(z)a4

S [q 4 + (2 ) 2 q4 + (2 2 )(232

and

1vzn3 G2.(z) !z

AA.(q) - 167(z)ng 3 ,v(Z) - G G(Z) (3.5)
2f 2 3 G (Z)

The structure factor to first order in AA is

A 0(q) i_ ~ (q)

S(q) - in )(q)(3.6)On I + u(q)A (q) + n [ j)N~)

Substituting Eqs. (3.4)-(3.5) into (3.6) and summing over j, we obtain (see

Appendix A)
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q cth I6q)L~ 2+ Ujl

q coth( fq)fq + + 2nu(g) + of
2[q 2 + u2

2[(nu(q)) + nu(q)dt]

cohaiq ul 2riu~fq + u

q 3 coth(Oq)tqA + u

12(nu(q)) 2 + nu(q)ajl Iq 2 + u +)3/J

4 3 1 2aq ch (q)q+U + U 3
12[(nu(q)) 2+ nu(q)ct] lIq 2+ u + (.7

U+ { [nu(q)) +sc 7(,z)nuq)] (3.8)

U_ - (nu(q) 2 [ + ct,,nu(q)]q
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In Eq. (3.7), the first bracket represents the first-order modifications, and

the second bracket shows the AA. correction. We will later discuss theseJ

terms in detail in Sec. VII.

IV. Elementary excitation spectrum

In Sec. II we used Eq. (2.10), evaluated in the first-order

approximation, to obtain the excitation spectrum at absolute zero temperature.

In this section we evaluate the temperature variation of the excitation

spetcrum. Within the chain diagram approximation for the pair distribution

function, we have the following expression for internal energy:

U(') - Uo ()+ 2 a [n2 f dr O(r) - fn f ( u(q)]o 2 fi J(2f) 2

+ d 2 ln~l + u(q)A.(q)]l (4.1)
28f (2w)J

The above equation for the internal energy is equivalent to the result of the

ring diagram. Making use of the first-order approximation for A. and summing

over j, we arrive at

U( ) - +o f drO(r) + 6nn'A dr (r)

+ f 2 coth(2) + nu(q) + Bn'u(q)+ (2,)2

2 2 2 2

- q[q + 2nu(q)] coth x [q2 + 2nu(q)]
2
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fnu(q)q coth(2 )[q2 2 nu(q)]

2 2 ) q 2 u q ] }(4.2)
[q + 2ru(q)]

where n' - [8n/a6]
z"

The expressions of interest in Eq. (4.2) are the terms that have the

form iE(q) coth[E(q)/2), which can be reexpressed as

1

E(q) + E(q)f(E) ,(4.3)

where f(E) is the Bose distribution function. As can be readily confirmed,

the total energy in Eq. (4.2) consists of two parts: one corresponding to the

ground-state energy, i.e., the zero-point energy, and the other to

quasiparticle excitation energy. Since we are mainly interested in the

quasiparticle excitation energy, we will discard the constant ground-state

energy term.

Extending this calculation to higher-order in the temperature by

including terms of order 6 in the eigenvalues, and using Eq. (3.3) together

with Eqs. (3.4) and (3.5) and summing over j, we obtain

U(U) -U (0) + -- dr O(r) + 8nn'A d-r (r) - f nu q
o 2 (2u) )

A f d_ ,nLuq) + A nu(q) qq2

2J 2 nuq 2J2 1 - 2 +~
(21r) (27r) [(nu(q)) + nu(q)a]

nuqq2 act(1 q2

x coth( q )[q
2  + U 2 nu(q)q2 coth( q2)

2 + [(nu(q) 2 + nu(q)aj) J+
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___________coth( )fq2 + U~i
+ 2u~ a 2 +

[(nu(q)) 2+ nu(q)aJ ;I q 2+ U +

nuaa3  coth(Lq)fq 2+ U]

( (nu(q)) 2 + nu(q)aI%" [q 2 + u; +

+q coh~ 2  + I- (n ~ + 2nnu') + n'u(sl)a + uaI}
+ 2[q2 + U + 2[(nu(q)) 2 + nu(q)aI

(+ nu(q)q~q 2 + U ]

2 (27) 2 [(nu(q)) 2 + nu(q)01 coh 2 Mq +U

2 1 2
nu(q)aq coth( Pq )nu(gaac

2 nu "Ua f(nu(q) )2+n~q
[(nu(q)) + n(\lrj+ uqa

coth(d)[q 2 + L; uo 3  coth(k) [q 2+ U
X - 2 +uaa U2 [n~q)

[q 2 - (uq)2+nu(q)a] U- [q 2 +Uj

Pq coth(VA)[q 2 + U] 2
+ - 2 - iu,,) 2nn'u(c) + n'u(i)cr+ nu(a)a')

2q2 + Un] ;I 2[n 2u(q) 2 + nu(q)a) ;I j

(4.4)

where a' -(a/8a) .* As we did before, taking only the qtiasiparticle

excitation spectrum from Eq. (4.4), we get

[nu(q) 2 +U+ nu(q)a I U2
E(T) 7(nu~~~q)) 2 + nu(q)a] I [(nu(q))2+ uqa"+
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+ nu(a)gq + nu(ag 3] 2[(nu q))2 + uq)][2+U]U

[(nu(q)) 2 + nu(q)a] [q2 + U +1 (nu(q)) 2- nu(q) [q +[q U

+ Qg - 2nn'u(c)2 + n'u(Qa + nu(ga'f

2[q 2 + U +1 nn I 2[(nu(q))2 + nu(q)a]

+ nu(q) q[q 2 + U ] nu(a)aq 2

+ " [(nu(q)) 2 + nu(q)] ;1 [(nu(q)) 2 + nu(q)a]IU

nu(ga)gc nu(cz)ca 3
[nnuq)) [ Unu[(q)qq

[(nu(q)) 2 + nu(q)al 4 q 2 + U-] ;1 [(nu(q)) 2 + nu(q)al ;1[q 2 + U.]"U-

+n2 2nn'ug + n'u(11 + nu(a)1' (45)
2[q + U_] 2[(nu(q)) + nu(q)]

In Eq. (4.5), the terms inside the first bracket represent the temperature-

dependent phonon spectrum, while the second bracket corresponds to the free

particle in nature. Equation (4.5) reduces to the excitation spectrum [Eq.

(2.12)] at absolute zero temperature because a(f,z) tends to zero in this

limit. Since a depends on Bose statistics, the excitation spectrum depends on

statistics.

To have a more explicit form for the excitation spectrum, we may choose

a mock potential. However, we have adopted a soft potential with a Lennard-

Jones-type tail in our previous works, which we introduce again here, i.e.,

V 0 r < a

(r) - ra(4.6)IE [(4)12 _ a16 r >a
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From the Fourier transform of this soft potential, we may find an expression13

for small q,

2nu(q) - A2(0) + Aq 2  + A2q
4  ln(qa) - A4q + ... (4.7)

where the coefficients A. are given as

23 A - 2 - wna 3
A(0) - 2xna2(V 3 EhA (7 -3 Vo 0E) ' 1 2 2 o

(4.8)
2 4xna 6  02057

A2 6 - 0 X 0!! (1016 + 48 x 7 - 0.5771
2 f2 x 3!

For small q and the low-temperature region, substituting Eq. (4.7) into

Eq. (4.5), the temperature variation of the phonon spectrum can be evaluated

from the expansion

E(q,T) - (A0 + 4-.) q - 2 + [B - 2 2 + l)]q 3

o A 8A3
0 0

2 2 4 2
q4 3 A2  A1  AI 5

+ A4  q 3+ - 2 q .+ (4.9)
L 8A 4A2  2A. .

0 0 0 0

where

B- (1+ 1 2 ) 2
I+A1 )/2A °  C - I A " 4A

2A o2
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We can easily confirm that Eq. (4.9) is the elementary excitation spectrum of

the Bose liquid at very low momenta, and as T - 0, a tends to zero, so that

Eq. (4.9) reduces to what we have derived for the spectrum at absolute zero

14
temperature,

E(q) - A(0)q + Bq 3 + Cq5 + ... (4.10)

For large q, we take only the dominant term to get

E(q) - q[q 2 + (4wna2/qa)Vo J (qa)J (4.11)

The Bessel function J is oscillatory, and hence there can be a minimum in the

energy curve. Around this minimum one can find the familiar roton spectrum1

M2 2
E(q) - A + 2 * (q - qo0 ) (4.12)

where m*, A and q are the roton effective mass, energy gap and minimum point,

respectively.

V. Thermodynamic functions

In the view of the energy spectrum, we follow Landau's theory to obtain

the phonon and roton energies. Using the small and large q expansions of the

energies, i.e., Eqs. (4.9) and (4.12), we obtain the thermodynamic functions

in a straightforward fashion as

Eh(T) - L {iC3 (kT) 3+ 2'3!i(z)(3) 4
p2_ (0)+ 4 (kBT)

Ep()"2w A2(0) A4(0)
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- (I + 3(4)i(Z) -(kBT)(5 +T) (+ ) 7 + (5.1)
A5(0) [ 4(5)B ]B + A7(0)(B ...

(0)nT, 47 / B 

E (T) - m[A + 2 (kBT)2 e (5.2)
rot 1 2 ;jq[0 2 (BT e

The corresponding specific heats are given by

C (T) - 13!1 (kBT) + 2.4i(Zr)(kBT) 3
ph A2(0) A4(0) B

4.5 !C(5)B + 3CjAS)Bj(kBT) + 7!(7)C (kBT) 6 +

A 5(0) 4 5BjBA 7(0) B

(5.3)

m*kBT,,, r A 2 ] A/kBT
Cv (T) - kj k-q i + ( ) ]e (5.4)

rot24 B

The theoretical expressions for other thermodynamical functions are

1_T f C 3 {s.3L (kBTY3  )4
Fph(T) - ', A2(0) A4(0)

A(0)B (4)] kBT)5  A (0) 11(kBT)
6 + ... } , (5.5)

F rot(T) -- qo(M 2 )'I (kBT)3/2 eA/k BT , (5.6)

kB  3C(3) 2
SkT) - 4(k T(kBT)

A2(O) B A4(0)
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I1 C4) (kT)4 1803!Y(z)BC(5) )5

A 5() BA(O) (5)J B A6(0)

+ 05"5C(C(7) 6 1 (5.7)

A7(0) B0

So(T) - T ) kBq°  A kB (5.8)

rot 2 Bq 1

Ph(T) 1 C(3) (kBT)3 - 3(kBT)4
pA2 (0) A (0)

2.41 (5)B I 3.vY(z)C(4) ( 5 59

A 5 () A(O)B 1 (5)j B

P rot (T) - q 0 (k BkT) 3/2 e- (5.10)

If the quasiparticles move with an average drift velocity with respect

to the rest system, and this momentum is associated with the normal fluid,

then its density is given by

PN(T) - - I- q l 3dq{)ff } . (5.11)

Since the normal fluid consists of the phonon and roton parts, from Eq. (5.11)

we can obtain directly

T)_3!_(3_ (1 _ 3  6 kPN(T) " 42A()'- 4A0) t 0) + A'!4b( [ 4 *...

P((.13)A )

(5.13)
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m* 3 -A/k BT
o(T) - 2 2(5.14)

rot 1r))-2 2 kT qoe

We note that Eqs. (5.1)-(5.14) are reduced to the thermodynamic functions in

Ref. 8 when we take a to be zero.

VI. First, second and third sound

For temperatures below 0.6 K where the roton excitation can be

neglected, there has been confusion regarding the normal and anomalous

excitation spectrums. Some researchers 2 7 ,2 8 have used the wrong normal

dispersion to obtain the temperature variation of the first sound. Mars and

29
Massey pointed out that the dispersion relation should be anomalous due to

ultrasonic attenuation.

As we mentioned earlier, we have derived the anomalous excitation

spectrums and introduced a new approach1 5 ,1 6 which includes a collision term

in the Boltzmann equation, and obtained the first and second sound

simultaneously. At low frequencies such that w i << 1, where W is the sound

frequency and r is the characteristic time, one can make use of a

hydrodynamical approach to sound propagation, and for the opposite case of Ws

>> 1, it is appropriate to make use of the kinetic equations. We shall

evaluate the first and second sounds in the kinetic approach. Since we have

treated the kinetic approach in detail, 1 6 we will briefly review only the

essential features and give the results on the basis of our new temperature-

dependent excitation spectrums.

We solve the equation of motion for the velocities of first and second

sound for temperatures below 0.6 K where roton excitation is negligible but

phonon excitation dominates. Our approach is similar to that developed by
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Andreev and Khalatnikov 2 7 and Disatnik, 3 0 and in order to obtain both the

first and second sounds, we include a collision term and treat the kinetic

equation for the phonon distribution function n(pr,t), equation of

continuity, and equation for the superfluid velocity v . When the liquid iss

slightly perturbed from equilibrium, we assume that the perturbation terms

from the distribution mass density p and superfluid velocity (v) are

proportional to exp(i(k. - w st)]. Here k is the complex wave vector kl +

ik2 ' where the ratio k2/kI characterizes the attenuation of sound. When k2/k1

<< 1, we may linearize the above mentioned three perturbed terms for n', p'

and v'. To simplify, we adopt the single collision model and use our
s

excitation spectrum, obtaining two linear homogeneous equations in p'/p and

v' /c:
S C'/ W:

Tjg(T)0 0

_2L}u 7 - 2u- WT g(ET) + 2u _n g( -T A 0

kC ir C TkC Po TPo

(6.1)

CC C
0R _s -_-o 2 PnAL

+ 1 - 2u-- T}g( T) + 2{u +- nTg( T)] '

C po
- r - 2u T g( T) " 2u~ [C PoT)J ~

(6.2)

where
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(T (f -/kv(T)
kv(T) (T ) - -[(w/kv(T)) 1] (6.3)

A nontrivial solution can be obtained from Eqs. (6.1) and (6.9) under the

condition that

2 1 + -a 2 [ u2  I2

)PO Co(T) PC

2 11 2r) Px 12u + c(T)] - 2uZJ [O) (6.4)

where we replace the group velocity by its thermal average to obtain

v(T) - C (1 + ' + 31'P 2)(6.5)
0T

o 31 2 - T ( 6 . )

4A 2(0) A(0) B)kBT ' 7' - (6.6)

and

iW rg + T (6.7)

s s

Since the expression C can be written as

C 2 _ C 2 + 2 CP2 Pn a C 0=C2+2u2 2n(68
2 Pc2~ ~ C 2 ~ 2cT + 2u 2 C2 n- (6.8)

0 3 C°P oo ap 2 o Po
0
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2

where CT - (aP/ap)T is the isothermal sound velocity, we find the unknown in

Eq. (6.4) to be ws/kC or ws/kCT. From Eq. (6.4) we can obtain the solutions

for the hydrodynamical region (w sr << 1) and collisionless region (wST >> 1).

A. Hydrodynamic region (wsr << 1)

In the low frequency limit (w << 1), 0 can be approximated asS

-1 + 2 - 1[ T - l]iW sr (6.9)

2
Substitution of Eq (6.9) into (6.4) yields a quadratic equation in (W s /kC)

Solving Eq. (6.4) for (w s/kC) together with Eq. (6.8), we obtain the first

and second sounds and their attenuation coefficients:

C I(T) Pn )2 2

CT I + PO 1(2u+l) + 2(2u 2+3u+l)a + (6u +5u+l) 4l (6.10)

Jkli - W (2u2+3u+l) - (2a+f ) , (6.11)

CT _ i + (2a+o) - f(u+l)2 , (6.12)
CT f2 P

kl 2 - 1 + (7u2+4u+l) 1 (6.13)

where a and 0 are given by

2 4 2 P a2Co0
2 a + 31P _.5P.)( ) - (6.14)

+vT~ TF 'p 3 J2J p0
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with

6 - [2A 2(0)]'I[A 2  (1+A)2 /4A 2(0)]

B. Collisionleas region (w s T I)

In the high-frequency limit, we can approximate Eq. (6.7) as

- (1-2) + 24 - (1-a) (6.15)
s

Substituting Eq. (6.15) into (6.4) and solving the quadratic Eq. (6.4) for

2
(Ws /kC) , we obtain the velocities of the first and second sounds and

corresponding attenuation coefficients:

C -M I + 1[ 6u2+8u+3) + (8u2 +15U+6) + (IOu2+1lu+3)p) (6.16)

CT 2

' L (6z+3f) + (u+l) ] (6.17)k1 1 2sr 0

C (T) 2 [2+(+~ 2 4 ( '

C 2 1 +Ta+7 _5 6 P 4 (5u 2u+12uf6) C 201 n (6.18)
T 0o

2 2

[I.Z - - 2(a'+3 IP2 -5 4 + ifllu -2 08. np6.9
,k ) 6w2r T T u 3 u 26+2 __ .]19)

In the derivation of Eq. (6.4), we have adopted the single-collision time

model for the collision integral term. If we neglect these collisions among

excitations and solve this equation for (w s/k), we obtain
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2 2

6C k C -- .[(u+l)2 + I -- 2(u+l)2 -- (6.20)
k _ 0s + 2 " 3 C 2 PO

We note that except for the a term, Eq. (6.20) is identical to what we have

15
derived in our previous paper.

In the case of low frequencies (w sr << 1), we can apply the superfluid

hydrodynamics equations together with the dissipation function to obtain the

first and second sounds. However, this derivation is not related directly to

our new temperature variation of the excitation spectLum, and thus we will not

discuss this here.

Since the third sound in superfluid helium films has been observed in

both thick and thin films, 3 1 researchers 3 2 have investigated this sound in

different ways. Recently we have also analyzed thin film data in terms of the
17

elementary excitations obtained by a microscopic approach. Using these

previous results and the new temperature-dependent excitation spectrum, we

will reanalyze the third sound data.

When sound waves with wavelength longer than the film thickness

propagate along a helium film, the normal fluid is held rigid to the

substrate, while the superfluid shows density fluctuations. For the third

sound velocity, we make use of the formula

C (T) - m Ps(T)x(T) (6.21)

where m is the helium mass, P (T) is the superfluid number density, and the

adiabatic elastic constant x can be obtained from the second derivative of the

excitation spectrum with respect to the surface number density n. Using Eqs.

(5.1), (5.13) and (5.14), we obtain the third sound velocity
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C2(T) - C2 [1 + X (kBT3 + X2 (kBT)
4 + X3 (kBT)

5

3 04kT- 1"B/ B 3/ "/BT ..

+ X4 (kBT) e A/kBT + X5 (kBT)
5/2 e B + ... B (6.22)

where

* 3
V -V - 3 E

o o 10

D - (2yra2 V )

(6.23)

1 43

2 4
B ia2V*[I + 6 Vo(3+21n(na V))]

and the coefficents C and X. are given by

o i*

1 Dn 3  
2D n )n D

)(11 1 1

3!caC(4) 18 101
x 2 n5D6 (B D2)

-3 -6 3 nD 2- '0'2 - 15 (1+ D 2)(
3 n 5 D6 LB 2 2a 2) _ (1 2D'"1

1 11

(6.24)



25

3

X5 n 2

2 (3)q 3

-r4 D - 2J i22r

1n BDI  2nD

As in Eq. (4.12), m*, A and q are the roton effective mass, energy gap and

minimum point, respectively. These parameters are given as a function of the

13
potential parameters in our previous work. In Eq. (6.22) the first term is

associated with the ground-state energy, and the next three and remaining

exponential potential terms are related to the phonon and roton energies,

respectively.

VII. Results and discussion

In the previous sections 4e introduced the eigenvalues of the effective

boson propagator and the effective eigenvalue for higher temperatures, and

then we evaluated the temperature-dependent structure factor and elementary

excitation spectrum. We used these quantities to obtain thermodynamic

functions, fluid density and various sounds in thin liquid 4He films.

The elementary excitation spectrum can generally be determined from

33 34
neutron scattering measurements and various sound velocity data. However,

the shape of the spectrum in the very low-momentum region can not be

determined well by such experimental methods, but it can be done indirectly

from specific heat measurements. The existence of the anomalous phonon

spectrum (concave up) was revealed in the first measurements of the specific

heat above 0.3 K by Phillips et al. 3 5 More recently, Greywall36 has measured

the specific heat of bulk liquid helium with high precision in the temperature
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range from 65 to 80 mK and for various molar volumes under high pressure up to

25 bars. The analysis of these data 3 7 through our excitation spectrum at

absolute zero temperature gives the anomalous phonon dispersion and also

agrees with the results obtained by sound propagation.

Concerning the specific heat of thin liquid 4He monolayer films, there

are several measurements of the heat capacity of 4He films adsorbed on various

substrates. Among these, we now analyze the specific data of 4He monolayers

adsorbed on 'Grafoil graphite" substrates 39 by using our Eqs. (5.3) and (5.4)

at 7(Z) - 0. Here, we assume that: (1) the interaction between 4He atons is

a soft potential, (2) the system is perfectly two dimensional, and (3)

substrate effects are negligible.

Concerning substrate effects, Krotscheck 4 0 considered that the liquid

helium is translationally invariant in the xy-plane, using three z-dependent

substrate potentials U(z), i.e., the Aziz potential,41 artificially-weakened

Aziz potential and Dupont-Roc potential,4 2 which model the adhesion force

between the 4He atom and substrate. He then displayed the one-body densities

p(z) for the above three potential models for helium films of the different

surface coverages and made use of them to evaluate the correlation energy and

collective excitation energy. Adopting Krotscheck's method, the number

density, which we should treat, will be changed. Then, in order to fit the

specific heat data, another sets of parameters in Table I should be chosen.

However, in the analysis of the superfluid properties of the helium films, we
43

proved that L/D 0 , where L is the healing length and D0 is one statistical

atomic layer (D0 - 3.6A), by one standard layer thickness is almost constant

below 1 K. Therefore, to simplify the problem we have neglected the substrate

effect.
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When the phonon part is truncated after the third term, we obtain the

numerical values for the parameters that give the best results for fitting the

specific heat data at various densities, which are listed in Table I. When

higher-order terms of the phonon part are included, another set of parameters

should be found.

Figure 1 illustrates our theoretical specific heat in comparison with

experimental data. At temperatures between 0.5 and 0.6 K, the phonon and

roton contributions are comparable for the given densities, and the latter

becomes dominant as the temperature increases. In the range of temperatures

around 1.2 - 1.6 K, the phonon part increases but the roton part decreases

more rapidly and hence dominates the overall behavior. Thus the specific heat

reaches a maximum, which depends on the density, and then falls sharply. When

we determine the temperature T at which the density becomes equal to the

actual density of liquid 4He, we find T, - 1.5 K at the density of 2.79 X 10-2

A-"2. Adjusting this value in accordance with the ratio of the theoretical and

experimental values for bulk 4He, we obtain TA - 1.2 K. Bishop and Reppy4 4

measured the superfluid transition temperature of a thin helium film adsorbed

on an oscillating substrate and reported TA - 1.215 K, which is in excellent

agreement with our estimate. In Eq. (5.3) the specific heat varies as T2 at

very low temperatures when 7(Z) is zero. This variation is an essential

characteristic of a two-dimensional continuum and two-dimensional Debye model.

Figures 2 and 3 represent the elementary excitation spectrums and

structure factors, respectively, deduced from the numerical values of the

parameters at various densities in Table I. Because of the scale factor, the

upward dispersion is not shown clearly in Fig. 2, but we have previously

reported that the upward bending becomes stronger as the density increases in

two dimensions.17,43 In Fig. 2, as the density increases the sound velocity
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and roton energy gap increase, but for the case of structure factors we can

not find a general tendency as for the excitation spectrums.

Let us now return to the temperature variation of the structure factors.

In Eq. (3.7) the first bracket expresses the first-order modification due to

the finite temperature. The effect of this finite temperature comes from the

effective interaction U±(q,8,z). The second bracket represents the AA (q)

correction terms. For low temperatures and small q at fixed density, the

interaction effect of U+(z,p,z) appears since a(#,z) has finite growing values

with increasing temperature. Therefore, Eq. (3.7) gradually has larger fixed

values as q - 0. We can easily confirm that in the limit T - 0 and c(fi) - 0,

Eq. (3.7) is reduced to the zero-temperature expression of Eq. (3.1). We note

that a(fi,z) depends on statistics because of the factor 7(z).

To draw the structure factor and excitation spectrum, we must first

evaluate y(z) as a function of temperature. However, y(z) can not be

represented as a finite closed function (see Appendix B), and so we evaluate

these values numerically as a function of temperature.45 Figure 4 illustrates

7(z) versus temperature, and the results of the numerical calculations for

y(z) are listed in Table II.

In order to fit the specific heat data at the density of

2.79 x 10-2 A 2 , using Eqs. (5.3) and (5.4) which include the 7(z) term, we

have chosen the potential and roton parameters as

a - 3.95 A , V- 8.75 K , Eo - 7.49 K , qo 0.814 ± 0.302

m* - 2.04 m , A - 3.35 K

Figure 5 illustrates the elementary excitations as a function of temperature

using the above parameters. As the temperature increases, the phonon part



29

shows strong upward bending. However, the roton energy gap decreases

significantly with increasing temperature, while the roton momentum qo

maintains almost the same values and thus seems to be independent of

temperature.

Figure 6 represents the theoretical temperature dependence of the

structure factor. This factor takes on gradually larger values with

increasing temperature as q - 0. The peak becomes higher for higher

temperatures because the roton energy gap decreases with increasing

temperature. This result agrees with the temperature dependence of the liquid

structure function obtained in a variational density matrix approach for

liquid 4He at nonzero temperatures.4 6 Extending Landau's theory, Bendt, Cowan

and Yarnell47 took into account the temperature dependence of the excitation

energy curve in the temperature range 1.1 - 1.8 K, showing that the

excitation spectrum generally decreases with increasing temperatures.

Recently Suebka and Lu48 adopted a modified Brueckner-Sawada method49 together

with an external potential and reproduced the results given by Bendt et al.

Campbell et al50 employed a variational density matrix theory, together

with the minimum principle of the Helmholtz free energy, to derive the

elementary excitation spectrum and the structure factor. Their results agreed

very well with the experimentally-determined energy of Cowley and Wood 5 1 at

low momentum (k < 0.4 AI ), and their excitation spectrum exhibits strong

anomalous dispersions with increasing temperature at very short wavelengths.

We note that Isihara and Samulski 5 showed that within the chain diagram

approximation the excitation spectrum decreases, while the structure factor

increases with temperature in bulk liquid 4He.

We note that for the thermodynamic functions the phonon part contains

both odd and even functions of temperature, and for the specific heat the
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leading term is quadratic in temperature, which is characteristic of two

dimensions. The roton part is characterized by the energy gap a and roton

momentum q." Because of the exponential factor, it is small for low

temperatures.

In Sec. VI we adopted the single-collision time method model for the

collision term and obtained the first and second sounds. Making use of Eq.

(6.8), we can express Eqs. (6.10) and (6.16) as follows:

SCI(T) - C1 (T) - C

02

- I + I _.o + (u+l)(2u+l)a + (3u+l)(2u+l)flPO 2 3 CO 0'p 22
0 ~o

0

W r << 1 , (7.1)
s

2 a2c

o2 1 10 L O 1
PO2 3 C 0 p2 2u 4(u+)o

0 ~o
0

(7.2)

Since the normal fluid density is given by Eqs. (5.13) and (5.14) in both

frequency regions, the leading term for the first sound increases as T3 , in

striking contrast to the T 41nT " increase of bulk liquid 4He. The absence of

the logarithmic term in two dimensions stems from the angle integrals. Figure 7

illustrates the temperature variation of the first sound velocity in both

frequency regions at very low and moderately low temperatures. In the region

above about T - 0.9 K, the sound velocity decreases due to a( ,z). We can

confirm that the phonon excitation spectrum is strongly anomalous, and the first

sound velocity in the hydrodynamic region increases more than in the collision



31

3 2C 2
region. In this plot, the parameters u and (Po/C )(8 olap2) are taken to be

1.8 and 0.19, respectively, as used by Singh-Prakash 2 8 and Marls. 29 The

corresponding attenuation coefficients in Eqs. (6.10) and (6.16) are given by

is. [(2u2+3u+l) f - 1(2a+#)] W , << 1 (7.3)8 PO 4 s

a I(T) -
0

---I- [1(6a+3p) + (u+l) , Wr >> 1 (7.4)
2w sr 8 POI s

The second sound and corresponding attenuation coefficients given in Eqs.

(6.12), (6.13), (6.18) and (6.19) can be expressed as follows:

C(T) - 1 + (1+2u2 l)] + a - (7.5)

(2+)(u+l) Ln] (7-.5)

2  2 PO 2 PO

22 1p

2

8C0 1 + (7u2+4u+l) PO 5 T << (7.7)

a (T) -

2 22
2  2c

+1 1u2 - 6+ a n 2(a' + PT  56P )
3 CO a2 P T

o 0

r > 1 , (7.8)s

The attenuation coefficients a1 (T) and Q2(T) in both regions show the variation

with p n(T) under the assumption of constant r. This result is similar to the

bulk case. 52 However, aI(T) in the hydrodynamic region and a2 (T) in the



32

collisionless region at temperatures above -0.6 K will depend not only on pn(T)

but also moderately on a(f,Z) and f [Eq. (6.14)].

Figures 8 and 9 represent our theoretical results for the temperature

variations of the first and second sounds at low frequencies, respectively. We

find that at absolute zero, the second sounds velocity C2 is about 1/.Th of the

first sound velocity. As temperature increases above -0.8 K, the contribution

of a(f,Z) to the first sound velocity is significant, causing a dramatic

decrease in the velocity.

We note in Figure 9 that as temperature increases, the second sound passes

through a gentle maximum, reaches a minimum at about 0.6 K, and then arrives at

another moderate plateau. After this it decreases rapidly. However, the effect

of a(PZ) on the second sound, which is different from that of the first sound,

is a slight increase of the velocity on the plateau.

In order to fit the data of the third sound corresponding to an atomic

coverage of D - 1.77, we have adopted the following potential and roton

parameters:

a - 2.55 A E - 0.12 K V - 2.17 K qo -0.73 A' 0 ' 0'

- 2.80 K , m* - 2.04 m

These parameters are slightly different from those we have taken in Ref. 17,

which is due to a(f,z). In Figure 10, we show that our microscopic approach

reproduces the temperature variation of third sound velocity. Our expression
53

Eq. (6.22) is very similar to the result given by Rutledge et al, who obtained

T3
a T term [see their Eq. (29)] with a temperature-dependent coefficient.

However, the coefficient X of the T3 term in Eq. (6.22) contains the potential

..I . ..
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parameters as well as being temperature dependent, and we have also obtained

higher-order terms, such as T5 and roton terms. Therefore, our derivation is

more meaningful and should fit the data more accurately.

In conclusion, we have evaluated the temperature variation of the

elementary excitation spectrum of thin liquid 4He films within the ring diagram

approximation. The effect of temperature on the phonon spectrum is very small

for very low temperatures, and thus three-phonon processes do not play much of a

role. However, as temperature increases from 0.6 K to the vicinity of the two-

dimensional transition temperature T, - 1.21 K, the temperature effect is very

significant for the physical quantities of thin liquid 4He films as in bulk

liquid 4He.
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Appendix A: Derivation of Eq. (3.7)

Substituting Eqs. (3.4) and (3.5) into Eq. (3.6) and retaining just the

first term, we have

2 4
2nu nag4

First Term - L + (2wi/B)2  1 + (2xh/B)212
fin j 2n+2 nq4 (A. )

q 4+U 2 [q 4 + (2mi)212

where a - 127(z)/i. We can rewrite this equation in two parts as

I1+ 2nu +a
2

First Term - 2(nu) 2 + nua

q + nuq + q ((nu) + nua) + ( )

(A.2)

- 2nu + a

22+2-( \ 2f(nu) + nua)+6 /4 2 2 2 227d2
j q + nuq q ((nu) + nua) +( )

Using the summation formula

I coth(wx) (A.3)
2 2 x_.x + 3

the first term of Eq. (A.2) becomes

q coth(i fq)[q2 + U] 2
2 [q +U] 2((nu)2 + nu(A.4)
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where U + nujI + (G + a/nu) J.Through a similar calculation for the second

terms in (A.l) and (A.2) and making use of the summation formula

2 2 2 2i 2m
1I+. j ) 2m

we then obtain Eq. (3.7).
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Appendix B: Numerical evaluation of 7(z)

The total number of particles of the system is determined by integra.ing

the distribution function together with the two-dimensional density of states,

N A dE (B.1)e-7 2 ( E - 1 )  1

where p is the chemical potential. Expanding the denominator of Eq. (B.1) and

performing the integration over energy, we obtain the simple form

k -- - in[l - e , (B.2)
kt

where we have used the relations

e 4j/k/B T "-/kBT Nh 2

e - -ln~l - e ) , 9 - (A2xmkBT

For sufficiently low temperatures, i.e., 8 >> i, Eq. (B.2) can be expressed as

eU . n O (B.3)
kBT n

At a density of 2.79 x 10 2 A 2 , the numerical value of 8 is 2.124/T, and we can

make the approximation z -1 - exp[-2.12/T] for 8 > 1 (T > 2.12 K). Therefore,

GI(z) can be expressed approximately as

GI(Z) - - -in(l-z -12 (B.4)
1 11 T
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On the other hand, we can write G2 (z) as

G2 (z) - d 22 2dz - f I lo .z (B.5)
dz z lnlz

However, this function can not be expressed as a finite combination of

elementary functions. 45 Therefore, for 7(z) we must perform the numerical

calculation.
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Table I. Potential and roton parameters to fit the experimental data of
specific heat in the microscopic theory presented in this paper.

n(l/A 2) a(A) V () E () qo(A - ) m*/m A(k)

0.0273 3.565 9.331 8.005 0.875 ± 0.275 2.027 3.29

0.0279 3.581 8.369 7.140 0.814 ± 0.302 2.042 3.35

0.0399 3.161 9.297 7.943 0.92 ± 0.350 2.184 4.00

0.0419 3.295 8.040 6.820 0.90 ± 0.320 1.891 4.30
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Table II. Numerical values of 7(z) - G2 (z)/G 1 (z) versus T.

T Gl(Z) " 2T G2(z) 7(z) - G2,(z)/GI(Z)

0.0714 29.6918 1.6449 0.0554

0.1732 12.2401 1.6448 0.1343

0.2357 8.9944 1.6436 0.1827

0.2857 7.4203 1.6398 0.2209

0.3286 6.4516 1.6331 0.2531

0.3895 5.4428 1.6169 0.2970

0.4393 4.8258 1.5980 0.3311

0.4507 4.7037 1.5930 0.3386

0.5000 4.2400 1.5689 0.3700

0.5571 3.8054 1.5369 0.4038

0.6571 3.2262 1.4741 0.4569

0.6893 3.0755 1.4528 0.4723

0.7321 2.8957 1.4242 0.4918

0.7750 2.7354 1.3955 0.5101

0.8571 2.4734 1.3409 0.5421

0.8940 2.3713 1.3169 0.5553

0.9643 2.1984 1.2721 0.5786

1.0914 1.9424 1.1955 0.6154

1.1634 1.8222 1.1548 0.6337

1.2120 1.7491 1.1286 0.6452

1.2720 1.6666 1.0974 0.6584

1.3790 1.5373 1.0451 0.6798

1.4450 1.4671 1.0149 0.6919

1.5150 1.3993 0.9844 0.7035
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Figure captions

Figure 1. Specific heat of 4He films plotted against temperature. The solid

dashed, dotted and dash-dotted lines represent the theoretical

calculations, and the experimental data are represented by +, x, 0

and a.

Figure 2. Theoretical excitation spectrums of the 4He films deduced from the

specific data as a function of the dimensionless parameter qa.

Figure 3. Structure factor S(q) deduced from the excitation spectrum as a

function of the wave vector q. -

Figure 4. Temperature variation of y(z).

Figure 5. Temperature variation of the excitation spectrum.

Figure 6. Tempertaure variation of the structure factor deduced from the

excitation spectrum in Figure 5.

Figure 7. First sound velocities in the hydrodynamic (w s r << 1) and

collisionless regions (ws >> 1). The dashed lines are the

velocities when a(f,z) is taken into account in both regions.

Figure 8. First sound velocity versus temperature. the dashed line is due

to the effect of a(f,z).

Figure 9. Second sound velocity versus temperature. The dashed line is due

to the effect of ar(#,z).

Figure 10. Third sound velocity for D - 1.77 as a function of temperature,

where the circles are data from Rutledge et al, and the solid

curve is the present theory.
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